Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury.

نویسندگان

  • Pierre Cordeau
  • Mélanie Lalancette-Hébert
  • Yuan Cheng Weng
  • Jasna Kriz
چکیده

BACKGROUND AND PURPOSE We sought to develop a model system for live analysis of brain inflammatory response in ischemic injury. METHODS Using a reporter mouse-expressing luciferase gene under transcriptional control of the murine glial fibrillary acidic protein (GFAP) promoter (GFAP-luc mice) and biophotonic/bioluminescent imaging as tools, we developed a model system for in vivo analysis of astrocyte activation/response in cerebral ischemia. RESULTS Analysis of photon emissions from the brains of living animals revealed marked sex differences in astrocyte response to ischemic injury. The increase in GFAP signals was significantly higher in female mice in the metestrus/diestrus period compared with male transgenic mice (1.71 x 10(7)+/-0.19 x 10(7) vs 0.92 x 10(7)+/-0.15 x 10(7), P<0.001). Similar results were obtained by quantitative immunohistochemistry (males vs females: 13.4+/-0.5 vs 16.96+/-0.64, P<0.0001). However, astrocyte activation/GFAP signals showed cyclic, estrus-dependent variations in response to ischemic injury. Physiologically higher levels of estrogen and application of pharmacologic doses of estrogen during replacement therapy attenuated GFAP upregulation after stroke. Interestingly, contrary to a positive correlation between the intensities of GFAP signals and infarct size in male mice, no such correlation was observed in any of the experimental groups of female GFAP-luc mice. CONCLUSIONS Our results suggest that GFAP upregulation in ischemic injury may have different functional significance in female and male experimental animals and may not directly reflect the extent of ischemia-induced neuronal damage in female GFAP-luc mice. Using a novel live imaging approach, we demonstrated that the early-phase brain inflammatory response to ischemia may be associated with sex-specific biomarkers of brain damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury

Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...

متن کامل

Experimental pediatric arterial ischemic stroke model reveals sex-specific estrogen signaling.

BACKGROUND AND PURPOSE Pediatric stroke, birth to 18 years, is a significant cause of long-term disability in the United States; however, there is currently little experimental data on the pathophysiology of childhood stroke owing to lack of animal models. We developed a novel mouse model of experimental childhood-onset arterial ischemic stroke to characterize the sex-specific response of the a...

متن کامل

نقش محافظتی استروژن و پروژسترون بر بافت معدی به دنبال ایسکمی- رپرفیوژن معدی در موش‌های صحرایی نر

Background and Objective: Ischemia-reperfusion (I/R) injury repeatedly occurs in situations such as surgery, hemorrhage, burns, trauma, and infection. It has also been found that females were more resistant than males, indicating that female sex hormones have a protective function. The aim of this study was to determine the role of estrogen, progesterone, and their combination in protecting the...

متن کامل

Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats

Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 2008